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Ewald's method is reconsidered to express the dependence of Madelung energy on the ionic charges explicitly, 
also taking into account the space-group symmetry of the structure. Upper bounds for the residues of the two 
partial series have been calculated by integral approximation; that relative to the direct-lattice series is shown 
to depend on the cube root of the unit-cell volume. The optimum value of the parameter A, which equalizes 
the rates of convergence of the two sums and minimizes the total number of terms, has been determined 
numerically for a given termination error and for a range of unit-cell dimensions. Theoretical results are tested 
by calculations on some specific crystal structures. 

Introduction 

In recent years, a new interest has arisen in calculations 
of cohesion energy in ionic or partially ionic* crystals 
according to the simple Born model (ToNi, 1964): the 
energy is divided into a dominant  (Coulombic) term, 
which can be computed exactly, and two secondary 
(repulsive and dispersive) terms which require a semi- 
empirical parametrization. However, the modern 
approach seems to aim at a quantitative interpretation 
of the crystal chemistry of complicated structures, 
which are important in mineralogy or in solid-state 
technology, rather than at an accurate ab initio 
calculation of physical properties of crystals with very 
simple structures, as in earlier times. In this respect, 
maximum computing efficiency of the time-consuming 
electrostatic term of the energy should be even more 
important than an accurate parametrization of the 
other two terms; this holds particularly if the energy is 

* A 'partially ionic' crystal is meant here to contain both 
prevalently ionic and prevalently covalent bonds, and not bonds all 
having an intermediate character between ionic and covalent. 

to be minimized by letting the atomic positions change, 
since the amount of computation then required may 
rise strikingly (Baur, 1965; Ladd, 1968; Giese & Datta, 
1973). 

The Coulombic formula for the electrostatic (or 
Madelung) lattice energy of a unit cell is: 

1 N N +oo Z i Z j  

/'-----e2 i~ .__ ~.= _~l ]Xij + l] (ifi=j,l~e0), (1) 

where e is the electron charge, N is the number of ions 
in the cell, z i is an ionic charge referred to the electron 
charge, x/i = x i - xj is an interatomic vector between 
ions contained in the cell, and I is a vector of the direct 
lattice. This straightforward calculation is not very 
convenient, as the Coulombic potential decreases 
slowly for large distances. However, the convergence of 
( l )  may be improved by suitably ordering the terms in 
the sum (Evjen, 1932): a computer program has been 
based on this method (Boeyens & Gafner, 1969), but it 
can handle only centrosymmetric structures. In his 
classic paper, Bertaut (1952) showed that expression 
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(1) can be replaced by a much faster converging series 
if the ions are considered to be charge distributions with 
spherical symmetry, instead of point charges. In the 
case of charge densities falling to zero at some distance 
from the ions, without overlapping, a reciprocal-lattice 
sum only is obtained; this will be called Bertaut series 
henceforth. If, on the other hand, charge distributions 
never go to zero so that overlap arises, a reciprocal- 
lattice sum plus a direct-lattice sum are necessary: in 
the particular case that the charge-density distribution 
is Gaussian, the Ewald double series is obtained, which 
had already been derived from (1) in a purely 
mathematical way (Ewald, 1921). 

Some computing programs are based on the Bertaut 
series (Ladd, 1968; Jenkins & Waddington, 1972; 
Ohashi, 1976), some on the Ewald series (Baur, 1965; 
Bonnin & Legrand, 1975; Fischer & Ludwiczek, 1975; 
Weenk & Harwig, 1977), and some on both series 
(Born & Zemann, 1964). The first method has the clear 
advantage that a reciprocal-lattice sum only is used; in 
addition, the computing accuracy can be improved by 
estimating the termination error of the series (Tem- 
pleton, 1955). However, the rate of convergence of the 
Bertaut series is not high, because the charge densities 
are approximated very roughly by discontinuous 
functions. On the other hand, Ewald's method, which is 
consistent with a more realistic physical model for the 
charge distribution, allows in principle a very fast 
convergence of both partial series, provided that a 
suitable width is chosen for the Gaussian (Tosi, 1964; 
Jones & Templeton, 1956). Besides, in the case that 
interatomic distances must be calculated for the 
repulsive and dispersive terms of the cohesion energy, 
the advantage of excluding the direct-lattice sum in 
Bertaut's method is somehow lost. 

In the present work the conditions for optimal 
convergence of the Ewald double series are investi- 
gated, so as to exploit its potentially greater efficiency 
for Madelung-energy calculations thoroughly. 

Ewaid's method and symmetry 

The physical meaning of Madelung energy depends 
strictly on how reliable the charges assigned to the 
single ions are. It is then very useful to express the 
functional dependence between energy and charges 
explicitly, so that the effect of changing charges upon 
the energy value can be evaluated directly, keeping the 
structural parameters constant (Jenkins & Wad- 
dington, 1972). This approach will be applied to 
Ewald's formula, which can then be written as: 

1 N N 

~ :-~e2 ~ Z ZiT-jF(xii); 
i=l j - I  

(2) 

F ( x i j ) :  ~ - o o h  h'5 exp Az ] c°s(2~h'xij) 

+~ erfc(AIxu+ il) 2A +Z _~,  Ix/j + il V/~ru (if i = j ,  I =/= 0), (3) 

where erfcO,) = 2/v/nfy+~ e x p ( - t  z) dt is the com- 
plementary error function, V is the volume of the unit 
cell, h is a vector of the reciprocal lattice, 6ij is the 
Kronecker symbol, and X' is a sum over noncentro- 
symmetric lattice vectors only, excluding the zero 
vector. The parameter A is inversely proportional to the 
width of the Gaussian representing the ionic-charge 
distribution and conditions the relative rate of con- 
vergence of the two series: for small values of A, the 
first series converges rapidly and the second slowly, 
and vice versa for large values. 

However, a direct use of formula (2) is not the most 
efficient calculation, since the space-group symmetry is 
not taken into account. The symmetry properties of the 
function F(x), defined by (3), can easily be proved to 
be: 

F(--x) = F(x), (4) 

F(x + I)= F(x), (5) 

r ( . ~ x )  = r (x) ,  (6) 

where .~  is any symmetry operator of the space group 
of the crystal structure. On the basis of (4) and (6) the 
sum (2) can be contracte~ ,to just the n ions contained 
in the asymmetric unit: 

~' = - e2 z ,zs  Pr F(xs m - -  Xr. 1 (7) 2 " ' 
r =  I S= I m =  I 

where Pr and Ps are the multiplicities of the crystallo- 
graphic sites occupied by the rth and the sth ions, 
respectively, x~. 1 and x~. m are the position vectors of the 
rth ion in the asymmetric unit and of the sth ion in the 
ruth equivalent position. The expression in square 
brackets is symmetrical with respect to an exchange of 
r with s. Eventually, the electrostatic lattice energy of a 
mole of crystalline substance can be written as: 

E :  ~ ~ Z r Z s C r s ,  ( 8 )  

r= 1 $:r 

• 1e2 a, 
Crr ~ - ~  Pr ~ F(xr, m -  Xr.l), (9) 

m = l  

] e 2 ps 

C r s : ~ - ~ P r  Z F ( x s . m -  Xr.i) (r:/:S), ( I 0 )  

m= I 

where. ~ i s  Avogadro's number and Z is the number of 
formula units in the unit cell. 

The expression (8) can be further contracted, so as to 
obtain a bilinear form in the charges of the independent 
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ionic species only, by simply summing the coefficients 
(9) and (10) which correspond to equally charged ions. 
This form is the most suitable for separating the effects 
of the structural features and the ionic charges on the 
Madelung energy. A computer program performing 
these calculations is described in Appendix I. 

Analysis  of  the convergence 

In order to estimate the termination errors of  the two 
series in (3), two spheres of radii h o and l o are 
considered, with a centre at the origin of the reciprocal 
and direct lattices. Each sum is assumed to be limited to 
lattice points lying inside the corresponding sphere 
only; its residue can then be approximated by a triple 
integral extended to all space outside the sphere itself; 
spherical coordinates are suitable for the calculations. 
An upper bound for the residue of the first series is 
obtained by putting x U = 0; taking into account that the 
density of terms in reciprocal space is V: 

1 I (__ :rr2 h2 t R,<-fff 2exp dr  --Tr A 2 ] 
12 /  ; +; ( zr:hz] 

= -  do s i n 0 d 0  exp - dh 
7/: o o ho A2 ] 

= ~ erfc . (11) 

As for the residue of the second series, it is not possible 
to derive an upper bound independent of x o directly, 
but the integral must be calculated as an explicit 
function of x u. The subscripts have been omitted for 
simplicity: 

1 [ - ( [ - e r f c ( A I x  + 
R2(x) = F J J J  ix+- l i  !1) dr  

n +oo  2 2; f .,, ferfc[Av/(l + 2xlcosO+ x2)]12d l 
_ 1  do s inOav l .- , 

V .I v/(l 2 + 2 xl cos 0 + x 2) 
0 0 I o 

=__ . + - - + - -  erfc[A(lo + x )1 
V 3x 2 4A 2 
[ (lo-- X)3 (lo-- X) 2 1  ] 

+ 3x + 2 + 4A 2 erfc[A(l o x)] 

l [(lo + x)21o + x l ] 
+ ~ 3x 2 6A2x 

x exp I -A 2(10 + x)2l + 

( % - x )  2 1 0 - x  

x 3x 2 

x expl-A2(/o - x)21~ ; 
) 

1 

1 l 

(12) 

for mathematical  details of the calculation see Appen- 
dix II. 

Taking into account (5), in (12) x represents the 
modulus of a 'reduced' interatomic vector, i.e. the 
shortest one in the class of all those obtained by adding 
lattice vectors I to it. R 1 and R2(x) are decreasing 
functions of h 0 and l 0 respectively. As A gets larger R I 
increases and R2(x) decreases, since the rates of 
convergence of the two series are affected oppositely by 
changes of A. Besides, R2(x) rises greatly as x 
increases, showing that the convergence becomes 
slower for longer interatomic vectors. It is necessary, 
however, to get rid of the dependence of R2(x ) on the 
length of the single interatomic vector, in order to 
obtain an estimate of the termination error valid for the 
whole calculation. It is then convenient to assume the 
value of (12) calculated for the longest reduced inter- 
atomic vector in the unit cell as an upper bound of the 
residue of the direct-lattice series. By examining a 
sample of crystal structures, the length of that vector 
has been shown to be always very close to 80 -90% of 
the cube root of the unit-cell volume (which is called 
x0); a reasonable bound for the residue is then R 2 < 
R2(xo), and this depends only on A, l o and the unit-cell 
volume. 

We now need to investigate at which values of h 0 and 
l o the two series must be terminated to obtain an equal 
residue R = R l = R 2. These values depend on A, and 
by solving equations (11) and (12) numerically with 
respect to h o and l 0 the functions ho(A) and 10(A), which 
comply with the required condition, have been derived; 

10 
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Fig. 1. Graph of the convergence function ho(A) of the reciprocal- 
lattice series, obtained by solving equation (11), for a residue R = 
10-8 A-I. 
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their graphs are shown in Figs. 1 and 2 for particular 
values of R and x 0. The numbers of terms in the two 
sums of (3) terminated at h = h 0 and l - 10 are, 
respectively: 

2zr 
nR = 5 -  ( 1 3 )  

4~z 13(A) 
n o - (14) 

3 X3o 

As A rises, the number of terms n R necessary for the 
convergence (within the error R) of the reciprocal series 
increases, whereas n D decreases. The fastest con- 
vergence of the Ewald series as a whole can then be 
defined by either the equality n R = n o, or the condition 
that the sum n R + n o is a minimum: the value (or 
values) of A which satisfies these conditions has to be 
found. With R and x o fixed, the functions nR(A)/no(A ) 

...o 

0.0 

• i ~ !  8 

. . . .  l , I 
0.2 0.4 0.6 0.8 

A (A -~) 

Fig. 2. Graph  of  the convergence function lo(A ) of  the direct-lattice 
series, obtained by solving equation (12), for a residue R = 10 8 
A - t  and for different values o f x  0 = V ~/3 (A). 

Table 1. Opt imum A (A -l)  values f o r  the convergence 
o f  E w a l d  series (3) terminated  with l < l o (A) and 
h <_ h o (,g-l),  according to residues R o f  10 -8 and 
10 -v A -~ respectively; x o (A) is the cube root o f  the 

unit-cell volume 

R = 10 -8 ,/~-I R - 10 -7 /~ - I  

x o A l 0 h 0 A 1 o h o 

4 0.615 10.0 0-785 0.615 9.5 0-725 
5 0.485 12.5 0 .615 0 .490  11.5 0 .580  
6 0.405 15.0 0-510 0-405 14.0 0-475 
7 0.345 17.0 0 .435 0 .350  16.0 0 .410  
8 0 .300  19.5 0 .380  0.305 18.5 0.355 
9 0 .270  21-5 0 .340  0-275 20-5 0.315 

10 0-240 24.0  0 .300  0.245 22.5 0.285 
11 0 .220  26-5 0 .270  0-225 24-5 0-255 
12 0-200 29.0 0 .250  0 .205 27-0 0 .235 
13 0.185 31.5 0 .230  0 .190  29.0  0 .220  
14 0-175 33.0 0 .215 0.175 31.0  0 .200  
15 0" 160 36.0  0-200 0.165 33-0 0" 185 
16 0" 150 38-0 0" 180 0 .155 35.5 0-175 
17 0.145 40-0 0 .175 0-145 37.5 0.165 
18 0.135 42.5 0 .165 0 .135 40 .0  0.155 
19 0" 125 45.5 0-155 0.125 43-0 0" 145 
20 0-120 47.5 0 .150  0 .120  44.5  0 .140  

and nR(A) + no(A) have been calculated for variable A; 
it has turned out that the value of A which equals n R 
and n o also minimizes n R + n o , so that the two 
conditions are equivalent. In Table 1 the results of these 
calculations are reported for two values of the residue 
R, and for several values of x 0 covering a wide range of 
unit-cell dimensions. It is interesting to remark that the 
minimum number of terms n R = n o is independent o f x  0 
to a good approximation, and amounts to about 60 and 
50, respectively, for the two values of R considered. 
Besides, for changes of R of an order of magnitude, 
very small changes are observed in the values of A 
which equalize the rates of convergence of the two 
partial series. 

Discussion 

In order to test the theoretical results of the preceding 
section, the crystal structures reported in Table 2 have 
been considered, and the convergence functions ho(A ) 

Table 2. Madelung  energies E (kJ mol -~) and crystal  data f o r  some structures 

AE (kJ mol-~) is the terminat ion error corresponding to a residue R = 10 -8 A-1. Previous calculations are reported in the references shown. 

Space 
group Z x o z (0)  E AE A E / E  

C a T i O  3 Pm3m 1 3.84 - -2 .00  - 1 7 9 1 2 . 6 7 4  2.0 x 10 -3 1.1 × 10 -7 
C a C O  3 R3c 2 4.96 - 0 . 6 0  - 2 0 0 9 . 9 4 2  4-5 x 10 -4 2.2 x 10 -7 
K2SO 4 Pnma 4 7.57 - 0 . 8 5  - 3 8 9 6 . 8 3 5  2-6 x 10 -3 6.6 x 10 -7 
MgAI204 Fd3m 8 8-08 - 2 . 0 0  - 2 2 8 0 7 . 8 4 5  2.9 x 10 -2 1.2 x 10 -6 
Ca3AI2(SiO4) 3 la3d 8 11-85 - 2 . 0 0  - 7 5 8 2 2 . 0 9 1  2-6 x 10 - i  3.4 x 10 -6 

Johnson & Temple ton  (1961) 
Jenkins & Waddington (1972) 
Jenkins (1972) 
Johnson  & Templeton ( 1961) 
Born & Z e m a n n  (1964) 
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and lo(A) have been checked in these specific cases. 
Starting from (8), (9) and (10), the maximum ter- 
mination error of the Ewald series dFma x = R~ + R 2 = 
2R can be shown to propagate onto the energy error as 
follows: 

de  < --2-  p zr 
r = l  

r =  i s = r +  I 

- Z PrlZ,.I R 
r = l  

= .A/'e2Z Izrl R, (15) 

where n' represents the number of ions in the forraula 
unit of the compound. For each structure, the A E  error 
corresponding to R = 10 -8 A -~ has been calculated; 
then, with A fixed, the energy was repeatedly computed 
for increasing h 0 and l 0 until the change was less than or 
equal to AE: from the corresponding h 0 and l 0 values, 
determined in this way for different values of A, 
'empirical' convergence curves ho(A ) and lo(A ) were 
built up for all the structures. The results show a satis- 
factory agreement with the theoretical curves of Figs. 1 
and 2; as an example, the curves for K2SO 4 are 
reported in Figs. 3 and 4. Also, in Table 3 the detailed 
behaviour of the energy convergence for KzSO 4 is 
shown with A = 0.30 A - l - "  El and E 2 a r e  the 
components of the electrostatic energy due to the first 
term and to the sum of the other two, respectively, in 
(3). By computing the energy for different values of A 
in all the structures considered, the minimum com- 
putation time was always obtained for the optimal A 
value given by Table 1. 

The problem of determining the optimum value of 
the parameter A yielding the fastest convergence of the 
Ewald series has been dealt with by an analytical 
approach, and has led to a dependence of A on the cube 
root of the unit-cell volume. A similar attempt (Bonnin 
& Legrand, 1975) produced a relation analogous to 
(11) for the residue of the reciprocal-space series, but 
questionable results for the residue of the other series: 
indeed, the integral in (12) was calculated only in the 

Table 3. Values o f  the two components  E I and  E 2 

(kJ  mo1-1) o f  the Made lung  energy o f  K2SO 4 f o r  
different termination parameters  h o (A -l) and  l o (]k), 

with A = 0-30/~-1 

ho El 1o E2 

0.30 0.969 17 --3897.772 
0.33 0.972 18 - 3 8 9 7 . 8 2 0  
0.36 0.980 19 --3897.815 
0.39 0.979 20 -3897 .815  

"T 
,,,< 

0.8 

0.6 

0.4 

0.2 m 

// 
// 

i 1 i 

0.2 0.4 0.6 0.8 

A (A-') 

Fig. 3. Empirical convergence curve ho(A ) for KzSO 4 (circles), 
compared with the theoretical curve (R = 10 -8 A-J). 

v 

2 0  m . _  % 
1 i i 

0.2 0.4 0.6 0.8 

A (A '1 

Fig. 4. Empirical convergence curve to(A) for K2SO 4 (circles), 
compared with the theoretical curve (R = 10 -s A-~). 

special case x = 0, and the result was assumed as a 
bound for the residue, whereas it has been shown that 
the integral increases strongly as x grows. On purely 
empirical bases, Weenk & Harwig (1977) have pro- 
posed the relation A = v/(n)/Xo for the optimum par- 
ameter; this A value is too small, but it reproduces the 
qualitative dependence on x 0 correctly. 

Research was supported by the Consiglio Nazionale 
delle Richerche, Roma. 

A P P E N D I X  I 

The program M A D E W A ,  written in Fortran IV, 
computes the Madelung energy of a crystal structure 
by Ewald's method on the basis of formulas (3), (8), 
(9), and (10). Any cell parameters and any space group 
are accepted; 20 atoms in the asymmetric unit are the 
maximum allowable in the present version (150 K of 
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core); this, however, can easily be enlarged. By means 
of a subroutine, indexes and moduli are computed and 
stored in the core for all reciprocal- and direct-lattice 
vectors which are contained within the spheres of radii 
h 0 and l 0, respectively, and are not related by a centre of 
symmetry. Ewald series (3) is calculated by another 
subroutine for all interatomic vectors xij which are not 
symmetry-related, using the relation Ix + II = x 2 + 12 + 
3 3 

~plp (~qGpqxq), where the Gpq's are metric tensor 
I 1 

elements. The output of the program shows: the total 
electrostatic lattice energy of a mole, E, and its two 
components E, and E 2, the coefficients (9) and (10) and 
the coefficients referring to the independent ionic 
species. As an example, running the program on K2SO 4 
in the optimal convergence conditions required 5.5 s of 
execution time on an IBM 370/158 computer. 

A P P E N D I X  11 

The triple integral in (12) was calculated in spherical 
coordinates assuming 0 = 0 for the direction of vector 
x. In the first step, the substitution t = Av/(l 2 + 
2xl cos 0 + x 2) was used: 

erfclA V/(I + 2 x l c o s  0 +  x2)l 
V/(I 2 + 2xl cos 0 + x 2) sin 0 d 0  

(1 + x)  erfc IA(I + x)] - ( l -  x)  erfc [ A ( I -  x)] 

xl 

exp l - A 2 ( / +  x)21 -- exp l - A 2 ( / -  x)2[ 

x/(~),4xl 

multiplying this function by 12dl and integrating by 
parts repeatedly between the limits l 0 and + oo gave the 
result of (12). 
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Comparisons of Atomic Thermal Motions for Graphite at 300 K Based on X-ray, 
Neutron, and Phonon-Spectrum Data 

BY R. CHEN* AND P. TRUCANO 

Crystallography Department, University o f  Pittsburgh, Pittsburgh, Pennsylvania 15 260, USA 

(Received 31 January 1978; accepted 26 June 1978) 

The mean-square amplitudes of vibration in graphite based on an X-ray charge-density analysis are 
0-0032 (2) and 0.0140 (3) /k 2 parallel to and perpendicular to the basal plane, respectively. Values for the 
parallel vibrations of 0-0031 (6) and 0.0032 A, 2 were derived from temperature-dependent neutron measure- 
ments and a calculated phonon spectrum. The neutron measurements and the phonon spectrum both predict 
lower values 10.0090 (20) and 0.0098 ,~,21 for the out-of-plane vibrations. This small discrepancy may be 
caused by small changes in the core atomic scattering factors from the free-atom values or by a deficiency in 
the phonon-spectrum model. 

* Present address: Department of Physics, National Taiwan Normal University, Taipei, Taiwan 107, Republic of China. 


